Spatio-Temporal Study of Criteria Pollutants in Nigerian City

Main Article Content

L. C. Anyika
C. O. Alisa
A. U. Nkwoada
A. I. Opara
E. N. Ejike
G. N. Onuoha

Abstract

Aims: An investigation of characteristic long term air pollutants known for temporal and spatial behaviors was conducted due to increased pollution scenarios in Nigerian cities as a result of deprived environmental enforcement of statutory obligations.

Study Design: One of the worlds’ most polluted cities (Onitsha lower basin) in Nigeria was selected for spatio-temporal study of three criteria pollutants combined with GIS and MATLAB alongside associated meteorological conditions during harmattan.

Methodology: 72-hourly analyses of the nine different locations having 4 sampling sites and 500 meters apart were done from December to February which generated over 19, 440 experimental data per quarter of each annual study.

Results: Upper Iweka/Nitel area recorded the highest concentration of SO2 pollutant at (94.2 µg/m3) due to longer residence times and low wind mixing height. Borromeo hospital showed the least active NO2 region but converges at points 1 due to North-east wind dissimilar to sampling points 1 having the lowest PM10 distribution. Measured temperature parameter correlates inversely with relative humidity and precipitation. The GIS spatial representation corresponded to temporal variability of gaseous and particulate pollutants.

Conclusion: All sampled areas had AQI above 50; hence the study identified SO2, NO2, and PM10 as Primary pollutants of Onitsha lower basin.

Keywords:
Air quality, GIS, harmattan, MATLAB, seasonal variations, air Pollutants, meteorology

Article Details

How to Cite
Anyika, L. C., Alisa, C. O., Nkwoada, A. U., Opara, A. I., Ejike, E. N., & Onuoha, G. N. (2020). Spatio-Temporal Study of Criteria Pollutants in Nigerian City. Asian Journal of Applied Chemistry Research, 6(3), 1-13. https://doi.org/10.9734/ajacr/2020/v6i330160
Section
Original Research Article

References

Babayemi J, Ogundiran MB, Osibanjo O. Overview of environmental hazards and health effects of pollution in developing countries: a case study of Nigeria. Environ. Qual. Manage. 2017;26(1):51-71.

Available:https://doi.org/10.1002/tqem.21480

Ityavyar EM,Thomas TT. Environmental pollution in Nigeria: The need for awareness creation for sustainable development. J. Res. For. Wildl. Environ. 2012;4(2):1-14

Marlier ME, Jina AS, Kinney P.L. Extreme Air pollution in global megacities. Curr. Clim. Change. Rep., 2016;2:15-27. Available:https://doi.org/10.1007/s40641-016-0032-z

Cunningham A. Amid Pollution and political indifference, Nigerians struggle to catch their breath.

(Aceessed: 19 November 2019)

Available:https://undark.org/2018/10/22/air-pollution-lagos/#

Utang PB, Peterside KS. Spatio-temporal variations in urban vehicular emission in Port Harcourt city, Nigeria. Ethiop. J. Environ. Stud. Manage. 2011;4(2):38-51 Availbale:https://doi.org/10.1007/s40641-016-0032-z

Anyika LC, Alisa CO, Nkwoada AU, Opara AI, Ejike EN, Onuoha GN. GIS and MATLAB modeling of criteria pollutants: A study of lower Onitsha basin during rains. J. Sci. Technol. Environ. Inform. 2018;6(1):443-457.Availbale:https://doi.org/10.18801/jstei.060118.47

Nkwoada A, Oguzie E, Alisa C, Agwaramgbo L. Enenebeaku C. Emissions of gasoline combustion by products in automotive exhausts. Int. J. Sci. Res. Publ. 2016;6(4):464-482.

Azadi H, Verheijke G, Witlox F. Pollute first, clean up later? Global. Planet. Change. 2011;78(3/4):77-82. Availbale:https://doi.org/10.1016/j.gloplacha.2011.05.006

Buckland K, Young S, Keim E, Johnson R, Johnson P, Tratt D. Tracking and quantification of gaseous chemical plumes from anthropogenic emission sources within the Los Angeles Basin. Remote. Sens. Environ. 2017;201:275-296. Availbale:https://doi.org/10.1016/j.rse.2017.09.012

Bakri NMN, Al-Junid MAS, Razak AHA., Idros MFM, Halim KA. Mobile carbon monoxide monitoring system based on arduino-matlab for environmental monitoring application. paper presented at the 4th international conference on electronic devices, systems and applications (ICEDSA) 14-15 September 2015. IOP Publishing IOP Conf. Series: Materials Science and Engineering. 2015;99:012009.

Availbale:https://doi.org/10.1088/1757-899x/99/1/012009

Said M. Safwat G, Turki M, Mamoun A. Spatiotemporal analysis of fine particulate matter (PM2.5) in Saudi Arabia using remote sensing data. Egypt. J. Remote Sens. Space Sci. 2016;19(2):195-205. Availbale:https://doi.org/10.1016/j.ejrs.2016.06.001

Zhao L, Meihui X, Kun T. Peichao G. GIS-based analysis of population exposure to PM2.5 air pollution: A case study of Beijing. J. Environ. Sci. 2017;59:48-53. Availbale:https://doi.org/10.1016/j.jes.2017.02.013

Fatehifar EA, Elkamel A, Taheri M. A MATLAB-Based modeling and simulation program for dispersion of multipollutants from an industrial stack for educational use in a course on air pollution control. Comp. Appl. Eng. Edu. 2006;14(4):300-312. Available:https://doi.org/10.1002/cae.20089

Ankita P, Rohit G. Pran N. Assessment of spatio-temporal variations in air quality of Jaipur city, Rajasthan, India. The Egypt. J. Remote Sensing Space Sci. 2018;21(2):173-181. Available:https://doi.org/10.1016/j.ejrs.2017.04.002

Wang Y, Ying Q, Hu J. Zhang H. Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014. Environ. 2014;73:413-422. Available:https://doi.org/10.1016/j.envint.2014.08.016

Dong R, Youping L, Hong Z, Xiaoxia Y, Xiaoman L, Xuejun P, Bin H. Spatiotemporal variations and possible sources of ambient pm10 from 2003 to 2012 in Luzhou, China. Environ. Eng. Res. 2015;19(4):331-338. Available:https://doi.org/10.4491/eer.2014.038

Maurya PS, Yadav KA. Evaluation of course change detection of Ramganga river using remote sensing and GIS, India. Weather Clim. Extremes. 2016;13:68- 72. Available:https://doi.org/10.1016/j.wace.2016.08.001

Fatehifar E, Elkamel A, Osalu A.A. Charchi A. Developing a new model for Simulation of pollution dispersion from a network of stacks. App. Math. Comput. 2008;206(2):662-668. Available:https://doi.org/10.1016/j.amc.2008.05.120

Chen W, Yan L. Zhao H. Seasonal Variations of Atmospheric Pollution and Air Quality in Beijing. Atmos. 2015;6:1753-1770. Available:https://doi.org/10.3390/atmos6111753

FEPA. Federal environmental protection agency act 1: National effluent limitations and gaseous emissions guidelines in Nigeria for specific industries; 1991.

Available:http://lawsofnigeria.placng.org/laws/F10.pdf

(Accessed: 18 September 2019)

Tecer LH, Tagil S. Spatial-temporal variations of sulphur dioxide concentration, source, and probability assessment using a gis-based geostatistical approach. Pol. J. Environ. Stud. 2013;22(5):1491-1498.

Subrata C, Srimanta G, Raj NS. Spatial and temporal variation of urban air quality: A GIS Approach. J. Environ. Prot. 2010;1:264-277.

Hong G, Xingfa G, Guoxia M, Shuaiyi S, Wannan W, Xin Z, Xiaochuan Z. Spatial and temporal variations of air quality and six air pollutants in China during 2015–2017. Nature Res: Sci. Rep. 2019;9(15201)1-7. Available:https://doi.org/10.1038/s41598-019-50655-6

Velders GJN. Geilenkirchen GP, De-Lange R. Higher than expected NOx emissions from trucks may affect atainability of NO2 limit values in the Netherlands. Atmos. Environ. 2011;45(18):3025-3033. . Available:https://doi.org/10.1016/j.atmosenv.2011.03.023

Tian D, Fan J, Jin H, Mao H, Geng D, Hou S, Zhag P, Zhang Y. Characteristic and spatiotemporal variation of air pollution in Northern China based on correlation analysis and clustering analysis of five air pollutants. JGR Atmos. 2020;125(8)1:1-8. Available:https://doi.org/10.1029/2019jd031931

Dey S, Gupta S, Sibanda P, Chakraborty, A. spatio-temporal variation and futuristic emission scenario of ambient nitrogen dioxide over an urban area of Eastern India using GIS and coupled AERMOD-WRF Model. PLosOne. 2017;12(1):e0170928. Available:https://doi.org/10.1371/journal.pone.0170928

WHO. WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide; 2005.

Availble:http://apps.who.int/iris/bitstream/10665/69477/1/WHO_SDE_PHE_OEH _06.02_eng.pdf.

(Accessed: 17 November 2019)

Sahu V, Gurjar BR. Spatio-temporal variations of indoor air quality in a university library. Int. J. Environ. Health Res. 2019;1:1-16.

Available:https://doi.org/10.1080/09603123.2019.1668916

Sharma M, Pal B, Pal A, Bajpai AB. Spatio-temporal changes and impact of air pollution on human health: A case study of Dehradun City. Essence Int. J. Environ. Rehab. Conserv. 2017;7(1):1-10.

Sun Z, Zhan D, Jin F. Spatio-temporal characteristics and geographical determinants of air quality in cities at the prefecture level and Above in China. Chin. Geogra. Sci. 2019:29(2):316- 324. Available:https://doi.org/10.1007/s11769-019-1031-5.

Guo H, Wang Y, Zhang H. Characterization of criteria air pollutants in Beijing during 2014–2015. Environ. Res. 2017;154:334-344. Available:https://doi.org/10.1016/j.envres.2017.01.029

Mawonike R, Mandonga G. The effect of temperature and relative humidity on rainfall in Gokwe region, Zimbabwe: A factorial design perspective. Int. J. Multidiscip. Acad. Res. 2017;5(2):36-46.

US EPA. Guideline for reporting of daily air quality—Air quality index (AQI) (EPA-454/R-99-010). Office of Air Quality Planning and Standards;1999.

Available:https://www.epa.gov/sites/production/files/2017-1/documents/trends_report_2003.pdf

(Accessed: 7 February 2020)