The Structural Phase Transition, Degree of Polymerization and Dynamics Characteristics of Liquid Magnesium Silicate: A Molecular Dynamics Simulation

Pham Huu Kien *

Thai Nguyen University of Education, 20 Luong Ngoc Quyen, Thai Nguyen, Vietnam.

Phan Dinh Quang

Thai Nguyen University of Education, 20 Luong Ngoc Quyen, Thai Nguyen, Vietnam.

Vu Van Anh

Thai Nguyen University of Education, 20 Luong Ngoc Quyen, Thai Nguyen, Vietnam.

Tran Thi Quynh Như

Thai Nguyen University of Education, 20 Luong Ngoc Quyen, Thai Nguyen, Vietnam.

Giap Thi Thuy Trang

Thai Nguyen University of Education, 20 Luong Ngoc Quyen, Thai Nguyen, Vietnam.

*Author to whom correspondence should be addressed.


Abstract

In this paper, the structural phase transitions, degree of polymerization, and dynamics characteristics in liquid magnesium silicate (Mg2SiO4) under pressure have been studied using molecular dynamics (MD) simulation. The results indicate that the structure of Mg2SiO4 liquid includes MgOy (y = 3, 4,…8) basic units distributed in the Si-O structure network that powerfully depend on pressure. In the range 28-32 GPa, the Si-O structure network causes structural transformation from SiO4 to SiO6 via SiO5 units. Mg-O and Si-O subnets tend to form clusters with structural heterogeneity. The degree of polymerization is considered via characteristics of OT2 (T is Si or Mg), triclusters, tetraclusters bonds, and the cluster of MgOy-MgOy, SiOx-SiOx and MgOy-SiOx links. We indicated that the degree of polymerisation significantly increases with the increasing pressure. The dynamic in Mg2SiO4 liquid has been investigated through the self-diffusion, low and fast atoms. The evidence about the fast diffusion of Mg atoms in a low-pressure range is also indicated in here.

Keywords: Mg2SiO4 liquid, structural phase transition, dynamics characteristics, dynamics heterogeneity, polymerization


How to Cite

Kien, Pham Huu, Phan Dinh Quang, Vu Van Anh, Tran Thi Quynh Như, and Giap Thi Thuy Trang. 2024. “The Structural Phase Transition, Degree of Polymerization and Dynamics Characteristics of Liquid Magnesium Silicate: A Molecular Dynamics Simulation”. Asian Journal of Applied Chemistry Research 15 (3):40-52. https://doi.org/10.9734/ajacr/2024/v15i3290.

Downloads

Download data is not yet available.

References

Taspinar OO, Ozgul-Yucel S, Lipid adsorption capacities of magnesium silicate and activated carbon prepared from the same rice hull, Eur. J. Lipid Sci. Technol. 2008;110:742–746.

Rashid I, Daraghmeh NH, MM. Omari Al, Chowdhry BZ, Leharne SA, Hodali HA, Badwan AA, Profiles of Drug Substances, Excipients and Related Methodology, vol. 36, Academic Press; 2011.

Yanagisawa K, Masaki K, Someno K. Method for Producing Rubber-Filler Master Batch, US20090018238A1; 2009.

Takashi A, Ryuichi A, Mamoru S, Naoya M, Megumi M, Masako S, Recording Paper and Ink Jet Recording Method by Use Thereof. 1988;US4758461..

Kohara S, Suzuya K, Takeuchi K, Loong CK, Grimsditch M, Weber JKR, Tangeman JA, Key TS. () Glass formation at the limit of insufficient network formers. Science. 2004;303:1649–1652.

de Koker NP, Stixrude L, Karki BB. Thermodynamics, structure, dynamics, and freezing of Mg2SiO4 liquid at high pressure. Geochimica et Cosmochimica Acta. 2008; 72(5):1427-1441.

Adjaoud O, Steinle-Neumann G, Jahn S. Mg2SiO4 liquid under high pressure from molecular dynamics. Chemical Geology. 2008;256(3-4):185-192.

Cochain B, Sanloup C, Leroy C, Kono Y. Viscosity of mafic magmas at high pressures. Geophysical Research Letters. 2017;44(2):818-826.

Taniguchi T, Okuno M, Matsumoto TX-ray diffraction and EXAFS studies of silicate glasses containing Mg, Ca and Ba atoms. Journal of Non-Crystalline Solids. 1997; 211(1-2):56-63.

Wilding MC, Benmore CJ, Tangeman J. A., Sampath S. Coordination changes in magnesium silicate glasses. Europhysics Letters. 2004;67(2):212-218.

Wilding MC, Benmore CJ, Tangeman JA, Sampath S. Evidence of different structures in magnesium silicate liquids: coordination changes in forsterite-to enstatite-composition glasses. Chemical Geology. 2004;213(1-3), 281-291.

Fiske PS, Nellis WJ, Xu Z, Stebbins JF, Shocked quartz; A 29Si magic-angle spinning nuclear magnetic resonance study. Am. Mineral. 1998;83:1285–1292

Allwardt JR, Stebbins JF, Terasaki H, Du LS, Frost DJ, Withers AC, Hirschmann MM, Suzuki A, Ohtani E. Effect of structural transitions on properties of high-pressure silicate melts: 27Al NMR, glass densities, and melt viscosities. Am. Mineral. 2007;92:1093–1104

Kelsey KE, Stebbins JF, Du LS, Hankins B. Constraining 17O and 27Al NMR spectra of high-pressure crystals and glasses: New data for jadeite, pyrope, grossular, and mullite. Am. Mineral. 2007;92:210–216

Dobson DP, Dohmen R, Wiedenbeck M. Self-diffusion of oxygen and silicon in MgSiO3 perovskite. Earth and Planetary Science Letters. 2008;270(1-2):125-129.

Zhang B, Wu X, Zhou R. Calculation of oxygen self-diffusion coefficients in Mg2SiO4 polymorphs and MgSiO3 perovskite based on the compensation law. Solid State Ionics. 2011;186(1):20-28.

Reid JE, Suzuki A, Funakoshi K, Terasaki H, Poe BT, Rubie DC, Ohtani E. The viscosity of CaMgSi2O6 liquid at pressures up to 13 GPa. Phys. Earth Planet. Inter. 2003;139:45–54

Liebske C, Schmickler B, Terasaki H, Poe BT, Suzuki A, Funakoshi K, Ando R, Rubie DC. Viscosity of peridotite liquid up to 13 GPa: Implications for magma ocean viscosities. Earth Planet. Sci. Lett. 2005; 240:589–604.

Stixrude L, Karki B. Structure and freezing of MgSiO3 liquid in Earth's lower mantle. Science. 2005;310:297–299

Karki BB, Bhattarai D, Stixrude L. First-principles calculations of the structural, dynamical, and electronic properties of liquid MgO. Phys. Rev. B 2006;73,174208

Karki, B.B., Bhattarai, D., Stixrude, L., 2007. First-principles simulations of liquid silica: Structural and dynamical behavior at high pressure. Phys. Rev. B 76,104205 (12 pages).

Nevins D, Spera FJ, Ghiorso MS. Shear viscosity and diffusion in liquid MgSiO3: Transport properties and implications for terrestrial planet magma oceans. American Mineralogist. 2009;94 (7):975-980.

Oganov AR, Brodholt JP, Price GD. Comparative study of quasiharmonic lattice dynamics, molecular dynamics and Debye model applied to MgSiO3 perovskite. Physics of the Earth and Planetary Interiors. 2000;122(3-4):277-288.

Lacks DJ, Rear DB, Van Orman JA. Molecular dynamics investigation of viscosity, chemical diffusivities and partial molar volumes of liquids along the MgO–SiO2 join as functions of pressure. Geochimica et Cosmochimica Acta. 2007;71(5):1312-1323.

Spera FJ, Ghiorso MS, Nevins D. Structure, thermodynamic and transport properties of liquid MgSiO3: Comparison of molecular models and laboratory results. Geochimica et Cosmochimica Acta. 2011;75(5):1272-1296.

Kuryaeva RG, Surkov NV. Effect of the replacement of aluminum by magnesium on the compressibility and degree of polymerization of silicate glasses. Journal of Materials Science. 2013;48:4416- 4426.

Karki BB. First-principles molecular dynamics simulations of silicate melts: Structural and dynamical properties. Reviews in Mineralogy and Geochemistry. 2010;71(1):355-389.