ATR-FTIR, SAXS and UV-Vis Studies of Silicone Hydrogel and Bio-Hydrogel Soft Contact Lenses

Sevgi Bayarı *

Hacettepe University, Department of Physics Engineering, 06800 Ankara, Turkey.

Tuğba Göcen

Zonguldak Bülent Ecevit University, Ahmet Erdogan Vocational School of Health Services 67100 Zonguldak, Turkey.

Akın Bacıoğlu

Hacettepe University, Department of Physics Engineering, 06800 Ankara, Turkey.

Semra İde

Hacettepe University, Department of Physics Engineering, 06800 Ankara, Turkey.

*Author to whom correspondence should be addressed.


Abstract

Aims: This study aimed to evaluate the effect of contact lens materials on the structural properties and to examine ultraviolet (UVA part) and visible (Vis) transmittance with and without UV filters of the commercially available silicone hydrogel (SiHy) and bio-hydrogel (bio-Hy) soft contact lenses (CLs) in vitro.

Place and Duration of Study: Hacettepe University, Department of Physics, Ankara, Turkey, between May 2018 and May 2021.

Methodology:Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectra of CLs were recorded (at removing from its package, after 10 min, 1 h and 1 day at room temperature) in the 4000-650 cm-1region  to  estimate water contents of CLs. Hierarchical Cluster Analysis (HCA) was performed to differentiate chemical structure of CLs based on the spectral differences. Ultraviolet (UVA) and visible light transmittance of (CLs) was measured in the 315 -800 nm region. Small Angle X-ray Scattering (SAXS) analyses were performed to obtain further structural information on nano-scale. 

Results: One of the key observations in this study is the large influence of lens water content. The HCA analysis grouped all the CLs of same  brand in same cluster based on their chemical similarity. The UVA transmittance results showed that CLs with UV blockers almost met ClassI and ClassII standards. The size (11.8-39.9 nm) and differences in morphologies of the nano globules were determined and correlated with equilibrium water content (EWC).

Conclusion: This work was designed to explain important characteristics of commercial CLs and results will have implications for future experimental and clinical research regarding hydration/ dehydration experiments with CL polymers.

Keywords: Soft contact lenses, lens polymers, water content, ATR-FTIR spectroscopy, hierarchical cluster analysis, UV-Vis, small angle X-ray scattering


How to Cite

Bayarı, S., Göcen, T., Bacıoğlu, A., & İde, S. (2022). ATR-FTIR, SAXS and UV-Vis Studies of Silicone Hydrogel and Bio-Hydrogel Soft Contact Lenses. Asian Journal of Applied Chemistry Research, 12(1), 1–16. https://doi.org/10.9734/ajacr/2022/v12i1210

Downloads

Download data is not yet available.

References

Alvord L, Court J, Davıs T, Morgan CF, Schindhelm K, Vogt J, et al. Oxygen permeability of a new type of high Dk soft contact lens material. Optom Vis Sci.1998;75:30–6.

Available:https://doi.org/10.1097/00006324-199801000-00022.

Li J, Celiz AD, Yang J, Yang Q, Wamala I, Whyte W, et al. Tough adhesives for diverse wet surfaces. Science. 2017; 357:378–81.

Available:https://doi.org/10.1126/science.aah6362.

Zhao Q, Yang X, Ma C, Chen D, Bai H, Li T, et al. A bioinspired reversible snapping hydrogel assembly. Mater Horizons. 2016;3:422–8.

Available:https://doi.org/10.1039/C6MH00167J.

Maldonado-Codina C. Soft Lens Materials. In: Efron N, Contact Lens Pract. 3rd ed., Elsevier; 2018; p. 45-60.e1.

Available:https://doi.org/10.1016/B978-0-7020-6660-3.00004-6.

Moore L, Ferreira JT. Ultraviolet (UV) transmittance characteristics of daily disposable and silicone hydrogel contact lenses. Contact Lens Anterior Eye. 2006; 29:115–22.

Available:https://doi.org/10.1016/j.clae.2006.03.002.

Swanson MW. A Cross-Sectional analysis of U.S. contact lens user demographics. Optom Vis Sci. 2021; 89:839–48.

Available:https://doi.org/10.1097/OPX.0b013e318255da45.

Moreddu R, Vigolo D, Yetisen AK. Contact Lens Technology: From Fundamentals to Applications. Adv Healthc Mater. 2019; 8:1900368.

Available:https://doi.org/10.1002/adhm.201900368.

Musgrave CSA, Fang F. Contact Lens Materials: A materials science perspective. Materials (Basel). 2019; 12:261.

Available:https://doi.org/10.3390/ma12020261.

Nicolson PC, Vogt J. Soft contact lens polymers: an evolution. Biomaterials. 2001; 22:3273–83.

Available:https://doi.org/10.1016/S0142-9612(01)00165-X.

Caló E, Khutoryanskiy V V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur Polym J. 2015; 65:252–67.

Available:https://doi.org/10.1016/j.eurpolymj.2014.11.024.

Nichols J. Contact Lens Spectrum. PentaVision LLC; Ambler, PA, USA 20–5;2017.

Chatterjee S, Upadhyay P, Mishra M, Srividya M, Akshara MR, Kamali N, et al. Advances in chemistry and composition of soft materials for drug releasing contact lenses. RSC Adv. 2020; 10:36751–77.

Available:https://doi.org/10.1039/D0RA06681H.

Efron N, Morgan PB, Nichols JJ, Walsh K, Willcox MD, Wolffsohn JS, et al. All soft contact lenses are not created equal. Contact Lens Anterior Eye. 2022; 45:101515.

Available:https://doi.org/10.1016/j.clae.2021.101515.

Iwata J, Hoki T, Ikawa S (2006) Silicone Hydrogel Contact Lens. Patent number: US0063852 A1.

Santos L, Rodrigues D, Lira M, Oliveira MECDR, Oliveira R, Vilar EY, et al. The influence of surface treatment on hydrophobicity, protein adsorption and microbial colonisation of silicone hydrogel contact lenses. Contact Lens Anterior Eye. 2007

; 30:183–8.

Available:https://doi.org/10.1016/j.clae.2006.12.007.

Chalmers R. Overview of factors that affect comfort with modern soft contact lenses. Contact Lens Anterior Eye. 2014;37:65–76.

Available:https://doi.org/10.1016/j.clae.2013.08.154.

González-Méijome JM, Lira M, López-Alemany A, Almeida JB, Parafita MA, Refojo MF. Refractive index and equilibrium water content of conventional and silicone hydrogel contact lenses. Ophthalmic Physiol Opt. 2006; 26:57–64.

Available:https://doi.org/10.1111/j.1475-1313.2005.00342.x.

Krysztofiak K, Szyczewski A. Study of dehydration and water states in new and worn soft contact lens materials. Opt Appl. 2014; 44:237–50.

Available:https://doi.org/10.5277/oa140206

Mirejovsky D, Patel A, Young G. Water properties of hydrogel contact lens materials: a possible predictive model for corneal desiccation staining. Biomaterials. 1993; 14:1080–8.

Available:https://doi.org/10.1016/0142-9612(93)90209-K.

Roorda W. Do hydrogels contain different classes of water? J Biomater Sci Polym Ed. 1994; 5:381–95.

Available:https://doi.org/10.1163/156856294X00095.

Sekine Y, Ikeda-Fukazawa T. Structural changes of water in a hydrogel during dehydration. J Chem Phys. 2009; 130:034501.

Available:https://doi.org/10.1063/1.3058616.

Munćan J, Mileusnić I, Šakota Rosić J, Vasić-Milovanović A, Matija L. Water properties of soft contact lenses: A comparative near-infrared study of two hydrogel materials. Int J Polym Sci.2016; 2016:1–8.

Available:https://doi.org/10.1155/2016/3737916.

Lira M, Lourenço C, Silva M, Botelho G. Physicochemical stability of contact lenses materials for biomedical applications. J Optom. 2020; 13:120–7.

Available:https://doi.org/10.1016/j.optom.2019.10.002.

Maimon O, Rokach L. Data mining and knowledge discovery handbook. Springer, Boston, MA; 2006.

Available:https://doi.org/10.5860/CHOICE.48-5729.

Tucker MA, Shields JA, Hartge P, Augsburger J, Hoover RN, Fraumeni JF. Sunlight exposure as risk factor for intraocular malignant melanoma. N Engl J Med. 1985; 313:789–92.

Available:https://doi.org/10.1056/NEJM198509263131305.

Roberts JE. Ultraviolet radiation as a risk factor for cataract and macular degeneration. Eye Contact Lens Sci Clin Pract. 2011; 37:246–9.

Available:https://doi.org/10.1097/ICL.0b013e31821cbcc9.

Delcourt C. Light exposure and the risk of cortical, nuclear, and posterior subcapsular cataracts. Arch Ophthalmol. 2000; 118:385.

Available:https://doi.org/10.1001/archopht.118.3.385.

Anthony P. UV radiation contact lenses and the ophthalmohelioses. OptomToday. 2005; 1:30–4.

Tasman W, Edward AJ. Duane’s ophthalmology. Philadelphia, Pa. : Lippincott Williams & Wilkins;.2007.

Yam JCS, Kwok AKH. Ultraviolet light and ocular diseases. Int Ophthalmol. 2014; 34:383–400.

Available:https://doi.org/10.1007/s10792-013-9791-x.

Rahmani S, Nia M, Baghban A, Nazari M, Ghassemi-Broum M. Do UV-blocking soft contact lenses meet ANSI Z80.20 criteria for UV transmittance? J Ophthalmic Vis Res. 2015; 10:441.

Available:https://doi.org/10.4103/2008-322X.176890.

Pitts DG. Ultraviolet-absorbing spectacle lenses, contact lenses, and intraocular lenses. Optom Vis Sci. 1990; 67:435–40.

Available:https://doi.org/10.1097/00006324-199006000-00007.

Jin I, Tao F, Ho L, Swarbrick HA, Dain SJ. Ultraviolet radiation transmission of soft disposable contact lenses and ISO 18369: claims and compliance. Clin Exp Optom. 2021; 104:579–82.

Available:https://doi.org/10.1080/08164622.2021.1878826.

Harris MG, Dang M, Garrod S, Wong W. Ultraviolet transmittance of contact lenses. Optom Vis Sci.1994; 71:1–5.

Available:https://doi.org/10.1097/00006324-199401000-00001.

Lin K-K, Lin Y-C, Lee J-S, Chao A-N, Chen HS-L. Spectral transmission characteristics of spectacle contact, and intraocular lenses. Ann Ophthalmol. 2002; 34:206–15.

Available:https://doi.org/10.1007/s12009-002-0025-5.

Lira M, Dos Santos Castanheira EM, Santos L, Azeredo J, Yebra-Pimentel E, Real Oliveira MECD. Changes in UV-visible transmittance of silicone-hydrogel contact lenses induced by wear. Optom Vis Sci. 2009; 86:332–9.

Available:https://doi.org/10.1097/OPX.0b013e318198d047.

Osuagwu UL, Ogbuehi KC, AlMubrad TM. Changes in ultraviolet transmittance of hydrogel and silicone-hydrogel contact lenses induced by wear. Eye Contact Lens Sci Clin Pract. 2014;40:28–36.

Available:https://doi.org/10.1097/ICL.0000000000000007.

Song M, Shin YH, Kwon Y. Synthesis and properties of siloxane-containing hybrid hydrogels: Optical transmittance, oxygen permeability and equilibrium water content. J Nanosci Nanotechnol. 2010; 10:6934–8.

Available:https://doi.org/10.1166/jnn.2010.2984.

Rahmani S, Mohammadi Nia M, Akbarzadeh Baghban A, Nazari MR, Ghassemi-Broumand M. Spectral transmittance of UV-blocking soft contact lenses: A comparative study. Contact Lens Anterior Eye. 2014; 37:451–4.

Available:https://doi.org/10.1016/j.clae.2014.07.011.

Artigas JM, Navea A, García-Domene Mc, Gené A, Artigas C. Light transmission and ultraviolet protection of contact lenses under artificial illumination. Contact Lens Anterior Eye. 2016; 39:141–7.

Available:https://doi.org/10.1016/j.clae.2015.09.008.

Depry J, Golding R, Szczotka-Flynn L, Dao H, Baron E, Cooper K. UVB-protective properties of contact lenses with intended use in photoresponsive eyelid dermatoses. Photodermatol Photoimmunol Photomed. 2013; 29:253–60.

Available:https://doi.org/10.1111/phpp.12064.

Kim E, Ehrmann K. Refractive index of soft contact lens materials measured in packaging solution and standard phosphate buffered saline and the effect on back vertex power calculation. Contact Lens Anterior Eye. 2020; 43:123–9.

Available:https://doi.org/10.1016/j.clae.2019.12.005.

González-Méijome JM, López-Alemany A, Lira M, Almeida JB, Oliveira MECDR, Parafita MA. Equivalences between refractive index and equilibrium water content of conventional and silicone hydrogel soft contact lenses from automated and manual refractometry. J Biomed Mater Res Part B Appl Biomater. 2007; 80B:184–91.

Available:https://doi.org/10.1002/jbm.b.30583.

Varikooty J, Keir N, Woods CA, Fonn D. Measurement of the refractive index of soft contact lenses during wear. Eye Contact Lens Sci Clin Pract. 2010; 36:2–5.

Available:https://doi.org/10.1097/ICL.0b013e3181c8135f.

Lira M, Santos L, Azeredo J, Yebra-Pimentel E, Real Oliveira MECD. The effect of lens wear on refractive index of conventional hydrogel and silicone-hydrogel contact lenses: A comparative study. Contact Lens Anterior Eye. 2008; 31:89–94.

Available:https://doi.org/10.1016/j.clae.2007.09.001.

Young MD, Benjamin WJ. Calibrated oxygen permeability of 35 conventional hydrogel materials and correlation with water content. Eye Contact Lens Sci Clin Pract. 2003; 29:126–33.

Available:https://doi.org/10.1097/01.ICL.0000062463.64717.86.

Nichols JJ, Berntsen DA. The assessment of automated measures of hydrogel contact lens refractive index. Ophthalmic Physiol Opt. 2003; 23:517–25.

Available:https://doi.org/10.1046/j.1475-1313.2003.00147.x.

Brennan NA. A simple instrument for measuring the water content of hydrogel lenses. Int Contact Lens Clin. 1983; 10:357–61.

Lee K, Kim K, Yoon H, Kim H. Chemical design of functional polymer structures for biosensors: From nanoscale to macroscale. Polymers (Basel). 2018; 10:551.

Available:https://doi.org/10.3390/polym10050551.

Saez‐Martinez V, Mann A, Lydon F, Molock F, Layton SA, Toolan DTW, et al. The influence of structure and morphology on ion permeation in commercial silicone hydrogel contact lenses. J Biomed Mater Res Part B Appl Biomater. 2021; 109:137–48.

Available:https://doi.org/10.1002/jbm.b.34689.

Sahabudeen H, Machatschek R, Lendlein A. Multifunctionality as design principle for contact lens materials. Multifunct Mater. 2021; 4 042001.

Available:https://iopscience.iop.org/article/10.1088/2399-7532/ac1e7d/pdf

Kline SR. Reduction and analysis of SANS and USANS data using IGOR Pro. J Appl Crystallogr. 2006; 39:895–900.

Available:https://doi.org/10.1107/S0021889806035059.

Franke D, Svergun DI. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallogr. 2009; 42:342–6.

Available:https://doi.org/10.1107/S0021889809000338.

Ilavsky J, Jemian PR. Irena : tool suite for modeling and analysis of small-angle scattering. J Appl Crystallogr. 2009; 42:347–53.

Available:https://doi.org/10.1107/S0021889809002222.

Dupre TE, Benjamin WJ. Relationship of water content with silicon and fluorine contents of silicone-hydrogel contact lens materials. Eye Contact Lens Sci Clin Pract. 2019; 45:23–7.

Available:https://doi.org/10.1097/ICL.0000000000000527.

Cotugno S, Mensitieri G, Musto P, Sanguigno L. Molecular interactions in and transport properties of densely cross-linked Networks: A Time-Resolved FT-IR Spectroscopy investigation of the epoxy/H2 O system. Macromolecules. 2005; 38:801–11.

Available:https://doi.org/10.1021/ma040008j.

Mantsch HH, Chapman D. Infrared Spectroscopy of Biomolecules. New York : Wiley-Liss; 1996.

Pastorczak M, Kozanecki M, Ulanski J. Water–Polymer interactions in PVME hydrogels – Raman spectroscopy studies. Polymer (Guildf). 2009; 50:4535–42.

Available:https://doi.org/10.1016/j.polymer.2009.07.048.

Mousa GY, Callender MG, Sivak JG, Edan DJ. The effects of the hydration characteristics of hydrogel lenses on the refractive index. Int Contact Lens Clin. 1983;10:31–7.

Millodot M. Dictionary of optometry and visual science. 7th ed. Oxford, UK: Butterworth-Heinemann; 2009.

Available:https://doi.org/10.1111/j.1444-0938.2009.00388.x.

Bennett ES, Weissman BA. Clinical contact lens practice. Philadelphia : Lippincott Williams & Wilkins ; 2005.

Kollbaum PS, Bradley A, Thibos LN. Comparing the optical Properties of soft contact lenses on and off the eye. Optom Vis Sci. 2013; 90:924–36.

Available:https://doi.org/10.1097/01.opx.0000434275.93435.da.

Wöhlk Wissen. High performance hydrogel or silicone hydrogel - when to fit which, http://www.vargellini.it/zaccagnini/download/approfondimenti/contattologia/woehlk-wissen high performance hydrogel VS SH.pdf; 2022. Accessed 30 May 2022

Bassnett S, Shi Y, Vrensen GFJM. Biological glass: structural determinants of eye lens transparency. Philos Trans R Soc B Biol Sci. 2011; 366:1250–64.

Available:https://doi.org/10.1098/rstb.2010.0302.

Science photo library. SEM of the human eye lens showing lens cells,

Available:https://www.sciencephoto.com/media/308710/view/sem-of-the-human-eye-lens-showing-lens-cells;2022 Accessed 30 May 2022

Science photo library. SEM of the lens of a human eye,

Available:https://www.sciencephoto.com/media/308701/view/sem-of-the-lens-of-a-human-eye; 2022 Accessed 30 May 2022