Synthesis; Characterization and Anti Inflammatory Activity of “3-(2-[1H Benzimidazole-2-YL]-2-Oxethyl] Phenyl) Acetic Acid and Its Derivatives”

Rohit Jaysing Bhor a* and Sonali Pawar a

a Department of Pharmaceutical Chemistry, Pravara Rural College of Pharmacy Pravaranagar, Tal-Rahata, District-Ahmednagar, Maharashtra, India.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJACR/2022/v11i430263

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/90473

ABSTRACT

A series of five-membered heterocyclic rings like Benzimidazole were synthesized by the reaction between benzene-1, 2 diamine and formic acid to form various Benzimidazole derivatives (BD- BK) compounds and was tested for their anti-inflammatory activity determined by rat-paw oedema method. All the synthesis compounds have been characterized by 1HNMR, IR and some Mass spectral data. The compounds were purified by recrystallization method. The entire compound gives good response for the anti-inflammatory activity: Benzimidazole (AA), 1-[(1H-benzimidazol-2-yl)-2-(3-hydroxyphenyl) ethanone (AC); 2-[(2-(1H-benzimidazol-2-yl)-2-oxoethyl] phenyl]-N-phenylacetamide (AJ); 2-[(2-(1H-benzimidazol-2-yl)-2-oxoethyl] phenyl]-N-(2-nitrophenyl) acetamide (AK); 2-[(2-(1H-benzimidazol-2-yl)-2-oxoethyl] phenyl]-N-(3-nitrophenyl) acetamide (AL). For this anti-inflammatory activity, Indometacin was used as a standard drug and compared to new synthesized drugs. Some new synthesized drugs have shown better activities for the anti-inflammation. The synthesize compounds were establish to be AA to AL. The compound AA, AC, AJ, AK and AL were established to be the most potent compound through compare to standard drugs Indomethacin.
Keywords: Benzimidazole; hydroxy acetic acid; benzene-1; 2-diol; 2-nitro aniline; indometacin; anti-inflammatory activity.

1. INTRODUCTION

Inflammation is an important pathogenetic factor in a variety of disorders. It is a serious issue in modern medicine. Nowadays, NSAIDs are widely used and account for 20% of the global population. They have antipyretic, analgesic, and anti-inflammatory effects. In 1944, the benzimidazole nucleus was found. It contains a fused benzene and imidazole ring. Its structure is similar to purine [1]. Benzimidazole contain important heterocyclic nucleus due to its wide range of pharmacological applications. The first benzimidazole was prepared in 1872 by the scientist Hoebrecker [2]. Benzimidazoles contain a hydrogen atom which was attached to nitrogen at 1-position (see Fig. 1). Nowadays benzimidazole is a moiety of choice which possesses many pharmacological properties.

![1H-benzimidazole](image)

Fig. 1. Benzimidazole heterocyclic nucleus

Benzoglyoxalines are another name for benzimidazoles. Since 1960, a molecule comprising benzimidazole and benzene rings has been widely employed in pharmaceutical applications [3-5]. The active ingredients of various medications are 1-H-benzimidazole rings, which have outstanding basic properties due to their nitrogen presence. These compounds have also been tested for anti-inflammatory action [6-9]. Because of their physiological features, five-membered-ring aromatic systems with one heteroatom in a symmetrical position have received the most attention [10-11]. It is also well recognised that several benzimidazole derivatives have a wide range of pharmacological effects, including antibacterial, anticonvulsant, and antifungal capabilities.

2. MATERIALS AND METHODS

2.1 Materials

Formic acid; Acetyl Chloride; Benzene-1,2-diol; Glycolic Acid; Benzoyl Chloride; Methyl Chloride; Ethyl Chloride; Benzamide; Aniline; 2-Nitro Aniline; 3- Nitro Aniline All chemicals were of analytical grade. All chemicals were of purchased from Modern Chemicals, Nashik and Some chemicals are available in College.

2.2 Methods

All Benzimidazole derivatives were synthesized by conventional method. Melting points were determined by open tube capillary method. The purity of the compounds was checked on thin layer chromatography (TLC) plates (silica gel G) in Chloroform: Ethanol: ethanol (6:4) and chloroform: methanol (8:2) solvent systems, the spots were located under iodine vapors and UV light. IR spectra were obtained on a Perkin Elmer Spectrum FTIR instrument (KBr pellets). 1H-NMR spectra were recorded on a Bruker AVANCE III 500 MHz (AV 500) spectrometer using TMS as internal standard in DMSO-d$_6$/CDCl$_3$ and mass spectra was obtained on JEOL GCMATE II MS is presented as m/z. The synthetic route for the title compounds is shown in Scheme 1.
2.3 Experimental Work

Chemistry: (Scheme IA)

Scheme 1A. Synthesis of 3-(2-H benzimidazole 2yl) 2-oxethyl phenyl acetic acid (AD)
Scheme 1B. Synthesis of 3-(2-1H benzimidazole 2yl)-2-oxethyl) phenyl) acetic acid derivatives (AE- AL)

2.4 Synthesis of Benzimidazole Derivatives

Synthesis of Benzimidazole (AA) : (Scheme 1A)

In a round-bottomed flask 2gm of o-phenylenediamine was react with 7ml of 90%formic acid. The mixture was heated in a water bath at 100 for two hours. After cooling, 10% sodium hydroxide solution was added slowly, until the mixture is just alkaline to litmus. Ice-cold water was used to rinse all solid out of the reaction flask. The crude product was pressed thoroughly on the filter paper, washed with about 25 ml of cold water, and then recrystallization with Hot water.

Synthesis of 1-(1H-benzimidazole-2-yl) ethanone (AB) : (Scheme 1A)

In a round-bottomed flask take 2gm of 1H benzimidazole and 2 ml of Acetyl chloride and the reaction mixture was heated under reflex condition till (after 2 hrs) completion of reaction (Checked by TLC). After completion of reaction the contents were allowed to cool obtain reaction
mixture, the solid obtained was filtered recrystallized from methanol to give 1-(1H-benimidazol-2-yl)ethaneone. Cool at room temperature; filter the product. Wash with cold water.

Synthesis of 1-(1H-benimidazol-2-yl)-2-(3-hydroxyphenyl) ethaneone (AC): (Scheme 1A)

In a round-bottomed flask take 2gm of 1-(1H-benimidazol-2-yl) ethaneone and 2gm Benzene-1,2-diol and heated under reflex condition till (after 4 hrs) completion of reaction (Checked by TLC). After completion of reaction the contents were allowed to cool obtain reaction mixture, the solid obtained was filtered recrystallized from methanol to give 1-(1H-benimidazol-2-yl)-2-(3-hydroxyphenyl) ethaneone. Cool at room temperature; filter the product. Wash with cold water.

Synthesis of 3-(2-[1H benzimidazole-2-yl]-2-oxoethyl] phenyl) acetic acid (AD): (Scheme 1A)

In a round-bottom flask take 2gm of 1-(1H-benimidazol-2-yl)-2-(3-hydroxyphenyl) ethaneone and 2ml Glycolic acid. reflux for 2hr. Cool at room temperature; filter the product. Wash with cold water. Filter the product.

Synthesis of (3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl] phenyl) acetic acid benzooic anhydride (AE): (Scheme 1B)

In a round-bottomed flask; take 2gm of 3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl]phenyl)acetic acid and 4 ml benzyl chloride and then heated for 2hr. Completion of reaction (Checked by TLC). After completion of reaction the contents were allowed to cool obtain reaction mixture, the solid obtained was filtered recrystallized from methanol to give 3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl phenyl) acetic benzooic anhydride. Cool at room temperature; filter the product. Wash with cold water.

Synthesis of {3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl] phenyl) acetic benzoic anhydride (AF): (Scheme 1B)

In a round-bottomed flask; take 2gm of {3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl]phenyl}acetic acid and benzoic acid in RBF; reaction mixture was heated under reflex condition at 100 till (after 2 hrs) completion of reaction (Checked by TLC). After completion of reaction the contents were allowed to cool obtain reaction mixture; the solid obtained was filtered recrystallized from methanol to give {3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl] phenyl) acetic benzoic anhydride. Cool at room temperature; filter the product. Wash with cold water.

Synthesis of methyl [3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl] phenyl] acetate (AG): (Scheme 1B)

In a round-bottomed flask; take 2 gm of {3-[2-(1H benzimidazole-2-yl)-2-oxoethyl] phenyl) acetic acid and chloromethane was heated together under reflex condition till (after 4 hrs) completion of reaction (Checked by TLC). After completion of reaction the contents were allowed to cool obtain reaction mixture, the solid obtained was filtered recrystallized from methanol to give methyl [3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl] phenyl] acetate. Cool at room temperature; filter the product. Wash with cold water.

Synthesis of ethyl [3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl]phenyl]acetate (AH): (Scheme 1B)

In a round-bottomed flask; take 2 gm of [3-[2-(1H benzimidazole-2-yl)-2-oxoethyl] phenyl] acetic acid and chloroethane was heated under reflex condition till (after 2 hrs) completion of reaction (Checked by TLC). After completion of reaction the contents were allowed to cool obtain reaction mixture, the solid obtained was filtered recrystallized from methanol to give ethyl [3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl] phenyl] acetate. Cool at room temperature; filter the product. Wash with cold water.

Synthesis of N-(3-[2-(1H-benzimidazol-2-yl)]-2-oxoethyl] phenyl) acetyl Benzamide (AI): (Scheme 1B)

In a round-bottomed flask; take 2 gm of [3-[2-(1H benzimidazole-2-yl)-2-oxoethyl] phenyl] acetic acid and Benzamide was heated under reflux for 4hr(Checked by TLC). After completion of reaction the contents were allowed to cool obtain reaction mixture, the solid obtained was filtered recrystallized from methanol to give N-(3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl] phenyl) acetyl Benzamide.
Synthesis of 2-[3-{2-(1H-benzimidazole-2-yl)}-2-oxoethyl] phenyl]-N-phénylacetamide (AJ): (Scheme 1B)

In a round-bottomed flask; take 2 gm of {3-(2-{1-H benzimidazole-2-yl})-2-oxoethyl} phenyl acetic acid and 2 ml aniline was heated under reflux condition for 2 hr at room temperature; (Checked by TLC). After completion of reaction the contents were allowed to cool obtain reaction mixture, the solid obtained was filtered recrystallized from methanol to give 2-[3-[2-(1H benzimidazole-2-yl)-2-oxoethyl] phenyl]-N-phenylacetamide. Cool at room temperature; filter the product. Wash with cold water.

Synthesis of 2-[3-{2-(1H-benzimidazole-2-yl)}-2-oxoethyl] phenyl]-N-(2-nitrophenyl) acetamide (AK): (Scheme 1B)

In a round-bottomed flask; take 2 gm of {3-(2-{1-H benzimidazole-2-yl})-2-oxoethyl} phenyl acetic acid and 2 ml 2-nitroaniline was heated under reflux condition for 4 hr (Checked by TLC). After completion of reaction the contents were allowed to cool obtain reaction mixture, the solid obtained was filtered recrystallized from methanol to give 2-[3-[2-(1H benzimidazole-2-yl)-2-oxoethyl] phenyl]-N-(2-nitrophenyl) acetamide. Cool at room temperature; filter the product. Wash with cold water.

Synthesis of 2-[3-{2-(1H-benzimidazole-2-yl)}-2-oxoethyl] phenyl]-N-(3-nitrophenyl) acetamide (AL): (Scheme 1B)

In a round-bottomed flask; take 2 gm of {3-(2-{1-H benzimidazole-2-yl})-2-oxoethyl} phenyl acetic acid and 3 nitro aniline was heated under reflux condition for 3 hr, cool in ice bath, cool at room temperature; (Checked by TLC). After completion of reaction the contents were allowed to cool obtain reaction mixture, the solid obtained was filtered recrystallized from methanol to give 2-[3-{2-(1H benzimidazole-2-yl)-2-oxoethyl} phenyl]-N-(3-nitrophenyl) acetamide.

2.5 Characterization

The purity of products was monitored through TLC plates and melting point was determined through melting point apparatus. Generally, Chloroform, ethanol, methanol and Benzene solvent medium was used for checking of reaction through TLC plates. Progress of reaction was monitored by thin layer chromatography. Ultra Violet lamp was used as visualizing agent. The whole reactions were carried out in clean glassware with specific catalysts, basic or acidic conditions. All synthesized compounds were characterized by using different spectroscopic techniques such as 1H NMR; IR and MS.

The physical data of 3-{2-[1H benzimidazole-2-yl)-2-oxoethyl] phenyl} acetic acid (AD) derivatives were shown in Table 1.

2.6 Spectral Data

Synthesis of Benzimidazole (AA) : (Scheme 1 A):

% yield: 80%; Melting point (°C): 170°C; Rp Value: 0.9; Benzene : Ethanol (4:1); FTIR (KBr) ν cm⁻¹: 3051.80 (Ar C-H), 2809.78 (Ar C-H), 1699.33 (Ar C=C), 1003.77 (Ar C-N), 1216.86 (Ar C-N), 3277.83 (Ar N-H); 1H NMR (500 MHz) CDCl₃ δ ppm: 12.3 (N-H), 7.2 (Ar C-H), 7.5 (Ar C-H), 7.7 (Ar C-H), 7.9 (Ar C-H), 6.0 (C-H); JEOL GCMATE II MS (m/z): 117 (M⁺), 118 (M⁺+1) Mol.Wt. 118.

Table 1. Physical Data of 3-{2-[1H benzimidazole-2-yl)-2-oxoethyl] phenyl} acetic acid (AD) derivatives

<table>
<thead>
<tr>
<th>SR. NO.</th>
<th>Compounds</th>
<th>Colors Of Compounds</th>
<th>Molecular Formula</th>
<th>Melting Point</th>
<th>% yields</th>
<th>Molecular Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AA</td>
<td>WHITE</td>
<td>C₂H₆N₂</td>
<td>170°C</td>
<td>80%</td>
<td>118</td>
</tr>
<tr>
<td>2</td>
<td>AB</td>
<td>YELLOWISH</td>
<td>C₂H₆N₂O</td>
<td>180°C</td>
<td>92%</td>
<td>161</td>
</tr>
<tr>
<td>3</td>
<td>AC</td>
<td>WHITE</td>
<td>C₁₃H₁₄N₂O₂</td>
<td>181°C</td>
<td>51%</td>
<td>236</td>
</tr>
<tr>
<td>4</td>
<td>AD</td>
<td>BROWN</td>
<td>C₁₃H₁₄N₂O₂</td>
<td>192°C</td>
<td>82%</td>
<td>278</td>
</tr>
<tr>
<td>5</td>
<td>AE</td>
<td>WHITE</td>
<td>C₂₂H₁₈N₄O₄</td>
<td>198°C</td>
<td>82%</td>
<td>398</td>
</tr>
<tr>
<td>6</td>
<td>AF</td>
<td>YELLOWISH</td>
<td>C₁₃H₁₈N₂O₃</td>
<td>200°C</td>
<td>75%</td>
<td>338</td>
</tr>
<tr>
<td>7</td>
<td>AG</td>
<td>WHITE</td>
<td>C₁₃H₁₈N₃O₃</td>
<td>195°C</td>
<td>89%</td>
<td>308</td>
</tr>
<tr>
<td>8</td>
<td>AH</td>
<td>WHITE</td>
<td>C₂₂H₁₉N₃O₃</td>
<td>197°C</td>
<td>95%</td>
<td>322</td>
</tr>
<tr>
<td>9</td>
<td>AI</td>
<td>WHITE</td>
<td>C₂₂H₁₉N₃O₂</td>
<td>201°C</td>
<td>89%</td>
<td>397</td>
</tr>
<tr>
<td>10</td>
<td>AJ</td>
<td>YELLOWISH</td>
<td>C₂₂H₁₈N₄O₄</td>
<td>202°C</td>
<td>65%</td>
<td>369</td>
</tr>
<tr>
<td>11</td>
<td>AK</td>
<td>GREY</td>
<td>C₂₂H₁₈N₄O₄</td>
<td>205°C</td>
<td>72%</td>
<td>414</td>
</tr>
<tr>
<td>12</td>
<td>AL</td>
<td>WHITE</td>
<td>C₂₂H₁₈N₄O₄</td>
<td>202°C</td>
<td>72%</td>
<td>354</td>
</tr>
</tbody>
</table>

Bhor and Pawar; AJACR, 11(4): 25-34, 2022; Article no.AJACR.90473
Synthesis of 1-(1H-benzimidazole-2-yl) ethanone (AB): (Scheme 1 A)

% yield: 92%; Melting point (°C) : 230°C; RF Value: 0.8; Benzene : Ethanol (9:1); FTIR (KBr) ν cm⁻¹: 3048.91 (C-H Stretch); 2881.13 (C-H Stretch); 1694.16 (C=C); 1191.79 (C-C); 1260.25 (C-N); 3482.81 (N-H); 1718.34 (C=O ketone); 1H NMR (500 MHz) CDCl3 δ ppm: 11.7 (N-H); 7.6 (Ar C-H); 7.5 (Ar C-H); 7.3 (Ar C-H); 7.1 (Ar C-H); 2.3(Methyl C-H); JEOL GCMATE II MS (m/z): 160 (M⁺), 161 (M⁺+1); Mol.Wt. 161.

Synthesis of 1-(1H-benzimidazol-2-yl)-2-(3-hydroxyphenyl) ethanone (AC): (Scheme 1 A)

% yield: 51%; Melting point (°C) : 187°C; RF Value: 0.5; Chloroform: Methanol (7:1); FTIR (KBr) ν cm⁻¹: 3068.97 (C-H Aromatic); 2797.24 (C-H Aliphatic); 1653.58 (C=C Aromatic); 153.51 (N-H Aromatic); 1286.30 (C=O ketone); 1710.50 (C=N Aromatic); 3247 (C=O); 2797 (C-H); 1340 (C-C); 3468 (N-H); 1008 (C-O); 1H NMR (500 MHz) CDCl3 δ ppm: 11.7 (N-H); 11.4 (N-H); 8.2 (Ar C-H); 8.0 (Ar C-H); 7.5 (Ar C-H); 7.3 (Ar C-H); 6.8 (Ar C-H); 7.0 (Ar C-H); 6.7 (Ar C-H); 6.4 (C-H); 5.3 (O-H) JEOl GCMATE II MS (m/z): 235 (M⁺), 236 (M⁺+1); Mol.Wt. 236.

Synthesis of 3-[2-(1H benzimidazole-2-yl)-2-oxoethyl] phenyl acetic acid (AD): (Scheme 1 A)

% yield: 82%; Melting point (°C) : 192°C; RF Value: 0.8; Chloroform : Ethanol (7:3); FTIR (KBr) ν cm⁻¹: 3059.55 (C-H Aromatic); 2881.23 (C-H Aliphatic); 1637.02 (C=C); 1000.72 (C-C); 3352.72 (N-H); 1340.28 (C=N Ar); 3026.73 (N-H Ar); 1719.98 (C=O ketone); 3537.72; 1199.93 (C-O Aliphatic); acid anhydride 1751; 1H NMR (500 MHz) CDCl3 δ ppm: 11.7 (N-H); 8.9 (Ar C-H); 8.8 (Ar C-H); 8.7 (Ar C-H); 8.5 (Ar C-H); 8.4 (Ar C-H); 8.3 (Ar C-H); 8.1 (Ar C-H); 8.0 (Ar C-H); 7.7 (C-H); 7.5 (C-H); 7.3 (C-H); 6.4(C-H), (C-H); 6.3 (C-H); Mol.Wt. 278.

Synthesis of 3-[2-(1H benzimidazole-2-yl)-2-oxoethyl] phenyl acetic benzoic anhydride (AE): (Scheme 1 B)

% yield: 75%; Melting point (°C) : 198°C; RF Value: 0.6; Chloroform: Ethanol (9:1); FTIR (KBr) ν cm⁻¹: 3051.85 (C-H Ar); 2797.23 (C-H Aliphatic); 1687.41 (C=C Ar); 1099.19 (C-C Ar); 1340.00 (C-N Ar); 3352.64 (N-H Ar); 1719.83 (C=O Ketone); 1193.72 (C-O); 1H NMR (500 MHz) CDCl3 δ ppm: 11.7 (N-H); 12.0 (N-H); 8.9 (Ar C-H); 8.8 (Ar C-H); 8.7 (Ar C-H); 8.5 (Ar C-H); 8.4 (Ar C-H); 8.3 (Ar C-H); 8.1 (Ar C-H); 8.0 (Ar C-H); 7.7 (Ar C-H); 7.5 (Ar C-H); 7.0 (Ar C-H); 6.4 (C-H); 6.3(C-H); Mol.Wt. 398.

Synthesis of 3-[2-(1H benzimidazol-2-yl)-2-oxoethyl] phenyl acetic benzoic anhydride (AF): (Scheme 1 B)

% yield: 89; Melting point (°C) : 200°C; RF Value: 0.8; Chloroform: Ethanol 7:3; FTIR (KBr) ν cm⁻¹: 3051.80 (C-H Ar); 2797.24 (C-H Aliphatic); 1695.12 (C-C Ar); 1178.29 (C-C Ar); 1340.28 (C-N Ar); 3460.63 (N-H Ar); 1725.88 (C=O)ketone; 1263.60 (C-O Aliphatic); acid anhydride 1746.46; 1H NMR (500 MHz) CDCl3 δ ppm: 11.7 (N-H); 11.6 (N-H); 11.3 (N-H); 8.9 (Ar C-H); 8.8 (Ar C-H); 8.7 (Ar C-H); 8.5 (Ar C-H); 8.4 (Ar C-H); 8.3 (Ar C-H); 8.1 (Ar C-H); 8.0 (Ar C-H); 7.7 (C-H); 7.5 (C-H); 7.3 (Methyl C-H); 7.0 (Ar C-H); 7.0 (Ar C-H); 6.4 (C-H); Mol.Wt. 338.

Synthesis of methyl 3-[2-(1H benzimidazol-2-yl)-2-oxoethyl] phenyl acetate (AG): (Scheme 1 B)

% yield: 95%; Melting point (°C) : 199°C; RF Value: 0.7; Chloroform: Ethanol (8:2); FTIR (KBr) ν cm⁻¹: 2972.63 (C-H Ar); 2881.30 (C-H) 1698=C(=) Aliphatic; 1247 (C=C Ar); 1340.28 (C-C Ar); 3026.73 (N-H Aliphatic); 1725.98 (C-N Ar); 1219.16 (N-H Ar); 1H NMR (500 MHz) CDCl3 δ ppm: 12.1 (N-H); 8.0 (Ar C-H); 8.0 (Ar C-H); 7.8 (Ar C-H); 7.6 (Ar C-H); 7.4 (Ar C-H); 7.3 (Ar C-H); 7.2(Ar C-H); 6.9(Ar C-H); 6.7 (Ar C-H); 6.2(C-H); 6.4 (C-H); 2.4 Methyl (C-H); Mol.Wt. 308.

Synthesis of ethyl 3-[2-(1H benzimidazol-2-yl)-2-oxoethyl]phenylacacetate (AH): (Scheme 1 B)

% yield: 95%; Melting point (°C): 202°C; RF Value: 0.6; Chloroform: Ethanol (9:1); FTIR (KBr) ν cm⁻¹: 3067.23(C-H Ar); 2977.80(C-H Aliphatic); 1594.84 (C=C Ar); 1201.43 (C-C Ar); 1270.40 (C-N Ar); 3295.50 (N-H Ar); 1695.12 (C=O)ketone; 1000.87 (C-O); 1H NMR (500 MHz) CDCl3 δ ppm: 11.5 (N-H); 8.6 Ar C-H); 8.5(Ar C-H); 8.4 (Ar C-H); 8.2 (Ar C-H); 8.1 (Ar C-H); 7.8 (Ar C-H); 7.7 (Ar C-H); 7.2(Ar C-H); 6.6 (Ar C-H); 6.4 (Ar C-H); 6.2 (Ar C-H); 3.0 (Ar C-H); Mol.Wt. 322.
Table 2. Anti-inflammatory activities of compounds AA to AK

<table>
<thead>
<tr>
<th>Code</th>
<th>Dose Mg/Kg</th>
<th>Inhibition of paw oedema after 3 h (%)</th>
<th>Inhibition of paw oedema after 6 h (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>30 mg/Kg</td>
<td>4.28 ± 0.28</td>
<td>88.24</td>
</tr>
<tr>
<td>AB</td>
<td>30 mg/Kg</td>
<td>2.48 ± 0.23</td>
<td>68.48</td>
</tr>
<tr>
<td>AC</td>
<td>30 mg/Kg</td>
<td>4.46 ± 0.22</td>
<td>51.16</td>
</tr>
<tr>
<td>AD</td>
<td>30 mg/Kg</td>
<td>2.62 ± 0.27</td>
<td>78.98</td>
</tr>
<tr>
<td>AE</td>
<td>30 mg/Kg</td>
<td>4.26 ± 0.24</td>
<td>69.48</td>
</tr>
<tr>
<td>AF</td>
<td>30 mg/Kg</td>
<td>3.22 ± 0.28</td>
<td>53.98</td>
</tr>
<tr>
<td>AG</td>
<td>30 mg/Kg</td>
<td>1.52 ± 0.27</td>
<td>79.54</td>
</tr>
<tr>
<td>AH</td>
<td>30 mg/Kg</td>
<td>3.48 ± 0.23</td>
<td>59.24</td>
</tr>
<tr>
<td>AI</td>
<td>30 mg/Kg</td>
<td>4.26 ± 0.24</td>
<td>76.48</td>
</tr>
<tr>
<td>AJ</td>
<td>30 mg/Kg</td>
<td>3.22 ± 0.28</td>
<td>61.16</td>
</tr>
<tr>
<td>AK</td>
<td>30 mg/Kg</td>
<td>4.52 ± 0.27</td>
<td>70.98</td>
</tr>
<tr>
<td>AL</td>
<td>30 mg/Kg</td>
<td>5.26 ± 0.24</td>
<td>79.48</td>
</tr>
<tr>
<td>Control</td>
<td>-</td>
<td>0.36 ± 0.28</td>
<td>-</td>
</tr>
<tr>
<td>Indomethacin</td>
<td>40</td>
<td>2.78 ± 0.340</td>
<td>67.44</td>
</tr>
</tbody>
</table>

1: Dose for 1–7: 30 mg/Kg; 2: Dose for indomethacin 40 mg/Kg b.wt; mean ± SEM; n+6

Synthesis of N-[(3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl] phenyl) acetyl] Benzamide (AI): (Scheme 1 B)

% yield: 89%; Melting point (°C): 204°C; Rf Value: 0.7; Chloroform: Ethanol (8:2); FTIR (KBr)
v cm⁻¹: 3005.52 (C-H Ar); 2977.80 (C-H); 1594.84 (C=C Ar); 1210.43(C-C Ar); 3098.08 (C=N);
1337.27 (N-H Ar); 3420.59 (N-H),1707(C=O),1278.57(N-H); 1H NMR (500 MHz) CDC13 δ ppm: 12.2 (N-H); 11.6
(N-H), 9.2(Ar-C-H); 9.1 (Ar-C-H); 9.0(Ar-C-H); 8.8
(Ar-C-H); 8.6(Ar-C-H); 8.5 (Ar-C-H); 8.3(Ar-C-H);
8.0 (Ar-C-H); 7.8 (Ar-C-H); 7.6 (Ar-C-H); 7.3 (Ar
-C-H); 7.2 (C-H); 7.1 (C-H);6.3(C-H);6.4(C-H);
Mol.Wt. 397.

Synthesis of 2-[3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl] phenyl]-N-phenylacetamide (AJ): (Scheme 1 B)

% yield: 65%; Melting point (°C): 206°C; Rf Value: 0.6; Chloroform: Ethanol (9:1); FTIR (KBr)
v cm⁻¹: 3074.98 (C=O), 3304.52(N
H), 1725.88 (C=O)ketone; 1263.60(C
H), 1696.12 (C=C Ar); 1178.29 (C
H)169
ν cm

Synthesis of 2-[3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl] phenyl]-N-(3-nitrophenyl) acetamide (AL): (Scheme 1B)

% yield: 92; Melting point (°C): 200°C; Rf Value: 0.8; Chloroform: Ethanol 7:3; FTIR (KBr)
v cm⁻¹: 3051.80 (C-H Ar); 2795.24 (C-H Aliphatic); 1696.12 (C=C Ar); 1178.29 (C-C Aliphatic);
1340.28(C-N Ar); 3460.63(N-H Ar); 1725.88 (C=O)ketone; 1263.60(C-O Aliphatic); acid anhydride 1756.46;
1H NMR (500 MHz) CDC13 δ ppm: 11.2 (N-H); 10.9 (N-H); 8.9
(Ar-C-H); 8.8 (Ar-C-H); 8.7 (Ar-C-H); 8.5 (Ar-C-H);
8.4 (Ar-C-H); 8.3 (Ar-C-H); 8.2 (Ar-C-H); 8.0
(Ar-C-H); 7.7 (Ar-C-H); 7.4 (Ar-C-H); 7.3
(Ar-C-H); 7.0 (C-H); 6.3(C-H),6.4(C-H), Mol.Wt. 397.

2.7 Biological Evaluation

Synthesized newer benzimidazole derivatives were screened for Anti-inflammatory activity. Total 12 compounds (4 Step Products + 8 Benzimidazole Derivatives) were evaluated for their biological screening. The following section describes, in brief the Anti-inflammatory activity.
2.8 Anti-inflammatory Activity

Anti-inflammatory activity of all synthesized benzimidazole derivatives was determined by the carrageen an-induced rat paw oedema model. Wistar rats (100-200 g) were divided into 3 groups as control, test and standard [12-15]. In each group there are six animals per group. During experiment; overnight fasted animals were used and during that period only distilled water was given to animals. Generally, Indomethacin was used as standard drug. Both test and standard drugs were suspended in 1% carboxymethyl cellulose (CMC) and administered orally through the Gavage needle. 1% of Carboxymethyl cellulose (CMC) was administered in control group [16-18]. After 1 hr of administering the compound, we induced the carrageen an (1%) by the sub planner surface of the right hind paws of animals. The initial paw volume and also the paw volume after 3 and 6 h of administering carrageen a were measured. Percent paw oedema inhibition was calculated for benzimidazole derivatives [19-20].

3. RESULTS AND DISCUSSION

The syntheses of benzimidazole derivatives from AE to AJ were undertaken as per the scheme 1B. The required 3-[2-[1H Benzimidazole-2-yl]-2-oxoethyl] phenyl] acetic acid (AD) was prepared by mixture. 2gm of 1-(1H-benzimidazol-2-yl)-2-(3-hydroxyphenyl) ethanone and 2ml Glycolic acid reflux for 2hr. After completion of reaction the contents were allowed to cool obtain reaction mixture, the solid product was obtained. IR spectra were obtained on a Perkin Elmer Spectrum1 FT-IR instrument (KBr pellets). Perkin Elmer Spectrum1 FT-IR instrument consists of globar and mercury vapor lamp as sources. 1H-NMR spectra were recorded on a Bruker AVANCE III 500 MHz (AV 500) spectrometer using TMS as an internal standard in DMSO-d6/CDC13 and mass spectra was obtained on JEOL GCMATE II. At the end of the experiment, it has been concluded that the compounds synthesized in the project have good yield value. The synthesized oxadiazole compounds were identified and characterized by IR, 1H NMR and MASS spectra. Then, the pharmacological activity was done. The entire compound had a good response for Anti-inflammatory activity: Benzimidazole (AA), 1-(1H-benzimidazol-2-yl)-2-(3-hydroxyphenyl) ethanone (AC); 2-[3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl] phenyl]-N-phenylacetamide (AJ); 2-[3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl] phenyl]-N-(2-nitrophenyl) acetamide (AK); 2-[3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl]phenyl]-N-(3-nitrophenyl) acetamide (AL). The results of Anti-inflammatory activity testing of the prepared compounds were shown in Table 2.

4. CONCLUSION

Various benzimidazole derivatives was synthesized by 3-[2-(1H benzimidazole 2yl)-2-oxoethyl] phenyl] acetic acid (AD). The total 12 benzimidazole derivatives were synthesized. All of the compounds were prepared in good yields. The structure confirmations of synthesized compounds were done by IR, NMR spectroscopy and MS. Biological activity of Anti-inflammatory activity was taken by using Wistar rats and it having body weight 150-200 gm. In this research; benzimidazole derivatives had stronger Anti-inflammatory activity against inflammation. Synthesized compounds exhibited more activity when compared to other benzimidazole. Hence, it can be concluded that the benzimidazole derivatives can be potentially developed into useful anti-convulsant agents. The synthesize compounds were establish to be AA to AL. The compound Benzimidazole (AA), 1-(1H-benzimidazol-2-yl)-2-(3-hydroxyphenyl) ethanone (AC); 2-[3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl] phenyl]-N-phenylacetamide (AJ); 2-[3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl] phenyl]-N-(2-nitrophenyl) acetamide (AK); 2-[3-[2-(1H-benzimidazol-2-yl)-2-oxoethyl] phenyl]-N-(3-nitrophenyl) acetamide (AL). were established to be the most potent compound as compared to standard drugs Indomethacin.

ACKNOWLEDGEMENT

The authors are thankful to Dr. S.B. Bhawar, Pravara Rural College of Pharmacy, Pravaranagar.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

2. Thomas J, Ger Pat. A anti-inflammatory and gastro sparing activity of some new

